If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2=240
We move all terms to the left:
5p^2-(240)=0
a = 5; b = 0; c = -240;
Δ = b2-4ac
Δ = 02-4·5·(-240)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*5}=\frac{0-40\sqrt{3}}{10} =-\frac{40\sqrt{3}}{10} =-4\sqrt{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*5}=\frac{0+40\sqrt{3}}{10} =\frac{40\sqrt{3}}{10} =4\sqrt{3} $
| 9=3(4+8t) | | 21=x/3+4 | | H(x)=2x^2-7x-12 | | -132+4x=64-3x | | 1.25t/1.25=36.25/1.25 | | |x/3|-5=2 | | -26=-7u+2(u+7) | | 3-4c=10+2(9-8c) | | -8u+6((u-6)=-24 | | -3.2(x)-3.1=5.4(x)+5.5 | | 10^x=19 | | 18=(3.14)d | | e=(3e+24) | | -66+32b=8(4b-9)+6 | | 3(y+2)^2=36 | | -3v+7=-9v+45 | | (21-x)(20-x)=0 | | 46m+35=6m+5(7+8m) | | -3s+6+3s=6 | | 5x-(14x)=30-2x | | (x/4)-2=12 | | 12x^2+220x+1007=0 | | (x-9)^2-72=0 | | (2x-5)-5(x+3)=0 | | 4x^2+71x+327=0 | | -132+4=64-3x | | 4x^2+71x+315=0 | | (x^2+2x)^2-11(x^2+2x)=-24 | | X^2+17x+84=0 | | 7/3x+7=-6 | | 50=2x+7 | | y*25/28=5/14 |